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Abstract-The harmonic analysis is applied to study the reflection and refraction patterns of thermal waves 
from a surface and an interface between dissimilar materials. Regardless of the boundary conditions 
imposed on the surface/interface, the reflection angle is found to be identical to the incident angle of 
thermal waves. The refraction angle of the thermal waves penetrating into the second material layer, 
however, depends on the ratio of the thermal wave speeds in the two material layers. The relative strengths 
of reflection and refraction waves to that of the incident wave are obtained for all the cases. The physical 
envelope for complete transmission and the physical conditions for complete reflection are discussed in 
detail. The results thus obtained are extended to study the reflection and refraction patterns of thermal 
shock waves in the neighborhood of a material interface. The relative thermal Mach numbers are used to 

characterize the reflection and refraction behavior of thermal shock waves. 

INTRODUCTION 

THE THERMAL wave theory describes a delayed 
response between the heat flux vector and the tem- 
perature gradient in the process of heat conduction. 
It is a high-rate mode1 specially developed for the 
short time behavior of thermal disturbances pro- 
pagating in solids. In contrast to the classical diffusion 
theory, the wave mode1 depicts a finite speed of heat 
propagation which becomes important when the time- 
rate change of temperature is high. A quantitative 
criterion for the dominance of the wave nature over 
the diffusion behaviour has been derived [I] : 

T., 3 exp [(C’/LX)~]. (1) 

It reveals that the wave nature in heat conduction can 
be important if (i) the relaxation time 7 = u/C* [2, 31 
is large, (ii) the response time t is short, and (iii) the 
rate of change of temperature T., is high. While the 
first condition deals with the intrinsic properties of 
the solid medium, the second and the third conditions 
also involve the thermal loading and local geometry 
of the system. A localized moving heat source with 
high intensity [4, 51, a rapidly propagating crack tip 
[6, 71 in solids, and an interface between dissimilar 
materials [S, 91, for example, are known situations 
where the wave behavior is pronounced. In addition 
to the existence of a sharp wavefront [g-13] in the 
propagation of thermal waves, the thermal resonance 
phenomena [14, 151 and the shock wave formation 
are characteristics pertinent to the wave theory which 
cannot be depicted by the classical diffusion model. 
When extended to the prediction of crack initiations 
around a fast-moving heat source [16], the wave 
theory depicts a crack initiation angle depending on 

the thermal wave speed. Also, a wider damage zone 
behind the heat source was found as a result of 
the thermal shock formation. In these studies, the 
diffusion model assuming an infinite speed for heat 
propagation appears as a special case. Generalization 
from the diffusion model to the wave theory involves 
much more than a switch from a parabolic to a hyper- 
bolic equation. Rigorous considerations for the physi- 
cal basis of the thermal wave theory include the exten- 
sion of Gibb’s equation for the thermodynamic 
irreversibility [ 17, 181, kinetic theory of molecular col- 
lisions [19, 201, and causality restrictions imposed by 
the special theory of relativity [21,22]. Along with the 
past research on the thermal wave propagation, a 
complete and detailed survey has been made in a 
recent annual review article by the author [ 11. It classi- 
fies the past research according to their individual 
emphases. 

The recent work by Zehnder and Rosakis [23] sheds 
light on the experimental verification for the thermal 
shock formation around a rapidly propagating crack 
tip. For a crack propagating in a 4340 steel with a 
speed of 900 m s- ‘, the transonic solution [6, 241 of 
the temperature field in the near-tip region preserves 
several salient features observed in the experiment. 
They include (i) the isotherm patterns parallel to the 
crack surface, (ii) the normal shock formation as a 
result of the intensified thermal energy cumulated in 
the immediate vicinity ahead of the crack tip, and (iii) 
a constant temperature gradient in the near-tip region. 
Should the classical diffusion mode1 be used to 
describe the corresponding phenomena, a family of 
parabolic isotherms and a l/Jr-type of singularity 
for the temperature gradient in the near-tip region 
result [24]. Besides, the intensification of thermal 
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NOMENCLATURE 

A amplitude of thermal waves [m] Y damping rate [s- ‘1 
c phase velocity of thermal waves [m s- ‘1 q integral variable 
c thermal wave speed [m s- ‘1 e direction angle of thermal waves 
i i I> 2 unit vectors in the x ,- and x,-directions measured from the vertical (x2) axis 
k thermal wave number Weal 

[number of waves m- ‘1 K thermal conductivity [w m- ’ “C- ‘1 
n unit vector in the direction of thermal 7 relaxation time [s] 

wave propagation w frequency of thermal waves [s- ‘1. 
4 heat flux vector yW m-‘1 
QI~ Q2 amplitudes of heat flux waves in the 

x, and x2 directions Subscripts and superscripts 
r position vector [m] x vector quantity of X 
RX ratio of X(‘)/Xuo xi i = I,2 : the component of vector X in 
M thermal Mach number defined as v/C the xi direction 
I physical time [s] x,j j E t, 1, 2 : derivative of X with respect 
T temperature [“Cl toj 
V velocity of moving source [m s- ‘1 x(i) i = 0, 1,2 : kinematic or thermodynamic 
x,, x2 physical coordinates with origin at the quantity X in the incident (i = 0), 

reflection point [ml. reflected (i = l), and refracted (i = 2) 
waves 

Greek symbols X(j) j E I, II : thermodynamic quantities X in 
CL thermal diffusivity [m’ s- ‘1 the material layer (j). 

energy ahead of the crack tip is much weaker. These TEMPERATURE AND FLUX WAVES 
phenomena are extremely important for the detailed 
understanding of the energy release rate around a 
dynamically propagating crack tip in solids. Due to 
preservation of this unusual behavior in the tem- 
perature field, future development of the thermal wave 
theory seems promising. 

The present paper develops fundamental under- 
standing of the reflection and refraction of thermal 
waves by a surface and an interface between dissimilar 
materials. Along with the thermal shock formation 
[&7] and the thermal resonance under frequency exci- 
tations [14, 151, it is another feature in the thermal 
wave propagation. For the case involving a free 
surface, the phase response of the incident and the 
reflected waves is studied under various boundary 
conditions. For the case involving a material interface, 
on the other hand, the emphasis is placed on the 
refraction behavior in relation to the relative thermal 
wave speeds. The physical conditions for the complete 
reflection and transmission of thermal waves will be 
obtained by the relative strength of reflected and 
refracted waves. In some situations, in addition to the 
damping characteristics in time, the transmitted wave 
decays in the principal direction of propagation and the 
wave nature in refraction diminishes. Lastly, an exten- 
sion of the results will be made for the thermal shock 
waves induced by a moving source in the supersonic 
range. The thermal Mach numbers are used to charac- 
terize the reflection and refraction of thermal waves. 

In the absence of a heat source, the energy equation 
for the thermal wave propagation can either have a 
temperature (T) or a heat flux (q) representation 
p-7, g-121 : 

V2T = (1/C2) T,,,+ (l/a) T,, (T-representation) 

V(V . q) = ( l/C2)q,,, + (l/a)q,, (q-representation) (2) 

with C and CI being respectively the thermal wave 
speed and the thermal diffusivity of the solid medium. 
Note that due to the phase lag between the tem- 
perature gradient and the heat flux vector, the consti- 
tutive equation in the linearized thermal wave theory 
is 

q(r, t) = - (C2rc/a) exp (- C’t/u) 

x ‘VT@, rl) exp(C*v/a) dv (3) 
s 

where K is the thermal conductivity and the ratio of 
a/C* is defined as the relaxation time 7 [2]. Due to 
such a complicated integral relationship, it has been 
shown that the q-formulation is more convenient to 
use for boundary value problems involving flux-speci- 
fied conditions [5, 7, 9, 121. 

Unlike the stress or acoustic waves, the thermal 
wave possesses a damping behavior resulting from the 
thermal diffusivity. The relaxation distance defined as 
C7 dictates the transition of thermal waves from an 
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Ir’ BO.5. under-damped 

wave behavior 

FIG. I. Propagation of temperature and heat-flux waves in 0 12 3 4 5 
solids and the coordinate system. k’ 

over-damped to an under-damped behavior [14, 151. 
For temperature waves propagating in solids, the 
damping behavior suggests the following wave form : 

T(r, t) = A exp (rt) exp [ik(n * r - ct)] (4) 

where y is the rate of damping, c the phase velocity, k 
the wave number, and n the unit vector in the direction 
of thermal wave propagation. For a two-dimensional 
wave shown in Fig. 1, r = x,i, +x2i2 and n = sin Oi, 

+cos Oi,. Equation (4) thus becomes 

= A exp (rt) exp [ik(x, sin 6+x, cos 6-ct)]. (5) 

In the absence of thermal damping, the value of y is 
zero and the phase velocity (c) is identical to the wave 
speed C. Equation (5) in this case reduces to the form 
of displacement waves propagating in an elastic solid 
[25]. In the presence of thermal damping, the damping 
rate (y) and the phase velocity (c) can be determined 
by substituting equation (5) into the T-representation 
in equation (2). It results 

and 

y = -l/21 = -c2/2u (6) 

c/C = ,/(l -(C/2cik)2). (7) 

Note that the wave frequency defined as o(k) = ck 
= C[k2-(C/2cr)2]‘/2 renders that d&/dk2 # 0. 
According to the definition for physical waves [26], 
therefore, the thermal wave is dispersive in nature. 
This is a salient feature distinguishing the thermal 
waves from the stress or acoustic waves. Moreover, 
it is noted that the phase velocity must be real. This 
condition requires that, for cc, k, and C being all 
positive 

k > C/2u. (8) 

In the presence of damping in general, equation (8) 
gives the physical condition for an under-damped 
behavior to exist in the thermal wave propagation. 
For the wave number k being smaller than the critical 
value of C/Zu, as demonstrated alternatively in terms 
of the wave frequency and modal number [ 14,151, the 
diffusion behavior dominates over the wave behavior 
and an over-damped wave presence. Since no physical 
wave would exist in this case, the present analysis will 
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FIG. 2. The dispersion relation between k* and c* for thermal 
waves. k* must be greater than l/2 for an under-damped 

wave behavior. 

be confined to the wave number restricted by equation 
(8). In terms of the dimensionless wave number 
k* = k/(C/a) and phase speed c* = c/C, the dis- 
persion relation of the temperature wave, namely 
equation (7), is displayed in Fig. 2. 

The propagating form of the heat flux wave can be 
determined in the same fashion. In two dimensions, 
the q-representation of the energy equation has the 
following components : 

41.1 I +42.12 = (1/C2)q,,,,+(lla)q,,, 

42.12+42.22 = (l/C2)q2,,,+(lI~)42.r (9) 

where q, and q2, respectively, are the components of 
the heat flux vector q in the x, and x2 directions and 
the subscripts denote differentiations. After careful 
manipulations, it can be shown that the heat flux 
waves possess the same under-damped behavior as 
the temperature wave. The corresponding expressions 
to equation (5) are 

= Q, exp(-f/2r)exp[ik(x, sint?+x,cos6-ct)] 

q2(x,,x2,t) = Q2 exp(--/2t)exp[ik(x, sin 6 

+x2 cos 0-ct)], with Q2 = Q, cot 6 (10) 

where c is the phase velocity obtained in equation (7). 
The relative strength of q2 to q, is cot 6. In the case of 
0 = 90”, refer to Fig. 1, the heat flux vector propagates 
along the x,-direction. The value of cot 0 is zero in 
this case and consequently q2 = 0. For 6 = O”, the 
heat flux vector propagates along the x,-direction and 
the amplitude of Q , must be zero in order to maintain 
a finite value of q2. Consequently, q, = 0 in this case. 

In passing, note that the function exp (-t/2t) 
approaches zero for the diffusion model assuming C 
being infinity. The wave forms represented by equa- 
tions (5) and (lo), therefore, do not exist for a 
diffusion behavior in heat conduction. For an 
extremely short time behavior with l/C2 >> l/u, on the 
other hand, t approaches infinity and equations (5) 
and (10) reduce to the standard forms of waves with- 
out damping. 
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REFLECTION FROM A SURFACE and A,,, = -Afo,. 

Since both temperature and flux waves possess the 
same under-damped behavior, reflection of thermal 
waves can be understood by studying the temperature 
wave alone. Referring to Fig. 3, let us consider an 
infinite surface subjecting to a temperature-specified 
boundary condition : 

T=O at x,=0. (11) 

The origin of the coordinate system (x,, x2) is 
assigned at the reflection point. The temperature wave 
contains two components. The incident component 
enters from the direction of BcO, measured from the 
vertical axis. The wave train of the incident wave is 
thus expressed by 

With the assistance of equation (l4), moreover, equa- 
tion (16) leads to 

T,o,t.~,,x2,~) = AD, evt-t/27) 

x exp [ik(,,(x, sin B(,, +x2 cos BcO, -c,,,t)]. (12) 

The reflected wave, on the other hand, departs from 
the surface along the direction of 0( ,). The wave train 
of the reflected wave is therefore 

T,~x~~x~~G = A,,, ewt-f/W 

xexp[ik,,,(x, sin8~,,-x,cos8,,,-c~,,f)]. (13) 

In these equations, subscripts (0) and (1) denote 
respectively the kinematic quantities in the incident 
and reflected waves. The phase velocities cfO) and c( ,), 
for example, are 

C(0) = J( I - (C/2ak,o,)z)C 

and cc,) = J(1 -(C/2olk(,,)*)C. (14) 

At the surface where the temperature is zero, com- 
bination of the two components gives 

T= T(O)+ T,,, = 40, exp &,,(x, sin e,o,-c,o,t)l 

+A,,, exp[~~,,,txl sin 4~ -c,,,t)] = 0 at x2 = 0. 

(15) 

k,,, = kc,,, e(,, = e,,,, ccl) = c(~), 

and A,,, = -Ace,. (17) 

This result demonstrates that (i) the reflected angle of 
the thermal wave is identical to the incident angle 
and (ii) the temperature-specified boundary condition 
does not alter the wave number and phase velocity 
after reflections. By substituting equation (17) into 
equation (l3), moreover, it yields 

T,,,txI,x2,f) = Ato, expt-f/27) 

xexp[ik,,,(x, sin B~,,+x,cosB~,,-c,,,f)+ix]. (18) 

In comparison with the incident wave, equation (I 2), 
a phase shift of x after reflection is evident. 

A similar approach can be taken should the surface 
be subjected to a flux-specified boundary condition : 

q2 =0 at x2 =O. (19) 

In this case, refer to equation (IO), superposition of 
the incident and the reflected flux waves at x2 = 0 
gives 

iQ Icoj cot eco,i ev Wco,txI sin qo, -cco,Ol 

+[QuI, cot 41,1exp[htx,,, sin 41,-cc,,oi = 0. 
(20) 

For all values of x, and t, equation (20) holds if 

&I = &ojT klj = ko,, ccl1 = cco), Qlclj = -Qltoj9 

and consequently Q2, ,) = - Qlco,. (21) 

For both components Q, and Q2, again, a phase shift 
of 180” results after reflections. Note that the incident 
and reflected temperature waves resulting from equa- 
tion (IO), by the decomposition of equation (3), are 

Since this equation holds for any values of x, and t, 
it implies 

T&,,x~, f) = s exp (- f/27) 
(0) 

x { 7~~~) exp Wo, tx I sin ecoj +x2 ~0s e,,, - c~~,OI 

+ ~exp(i[k,,,(~,sine,~,+~,c0se,~~-c,~,f)+a/2l) 
(0) I 

(22) 
I 
x2 

I T=Oor 

I  
incident I I reflected 
temperature wave 1 temperature wave 

T,, To, 

FIG. 3. The incident and reflected temperature waves from 
a surface subjecting to a temperature- or flux-specified 

boundary condition. 

(16) 

Q 
T,(x,,x,,f) =aexp(-l/27) 

K Sin o(o) 
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At the surface of x2 = 0, clearly, the incident and 
reflected waves are out-of-phase by 180”. In contrast 
to the previous case with temperature-specified 
boundary condition, however, additional components 
with phase shifts being respectively 7/2 and 3r/2 exist 
in the incident and reflected waves. In the thermal 
wave propagation, the phase shift strongly depends 
on the boundary conditions imposed on the surface. 
Should the boundary condition (11) be replaced by 
T., = 0 at x2 = 0, for example, it can be shown that 
the incident and reflected waves become in phase and 
no phase shift exists after reflection. 

REFLECTION AND REFRACTION FROM A 

MATERIAL INTERFACE 

A more complicated situation results when the ther- 
mal wave penetrates through an interface between 
dissimilar materials. Denoting the kinematic quan- 
tities in the refracted wave by subscript (2) as shown 
in Fig. 4, superscripts (I) and (II) are used to denote 
the thermal properties in each material layer. The 
temperature will be used in deriving the refracted 
angle O(,, in relation to the incident angle &,. The 
continuities for both temperature and heat flux waves 

T”’ = T”” and q!j) = qy’) at x2 = 0 (24) 

are imposed as the boundary conditions across the 
material interface. 

For one-dimensional waves, Frankel et al. [9] 
showed that continuity of heat flux in equation (24) 
results in a condition containing mixed-derivatives of 
temperature with respect to space and time. The flux 
formulation, therefore, was employed instead. Also, 
when the relaxation time in the two material layers 
are equal, i.e. T (” = r("), they found that the condition 
of flux continuity in equation (24) reduces to that in 
Fourier’s law of heat conduction, i.e. rc”‘Tj = 
K(“)F~“. Analytical solutions exist for this case 
which were used to validate the numerical solutions 
employing the Runge-Kutta method for 7(') # 7("). 

By examining their solutions for both temperature 
and heat flux distributions across the material inter- 
face, however, the effect of different ratios of 7(')/7(") is 
insignificant. Larger values of t(") only brings the 

refracted 

I 
incident 8 

I reflected 
t 

temperature wave 1 temperature wave 

T m ,  To, 

FIG. 4. Reflection and refraction of temperature waves from 
the interface between material layers (I) and (II). 

transmitted ripple closer to the material interface 
while the wave behavior in the neighborhood of the 
interface remains unchanged. 

The same forms of temperature waves are allowed 
in each material layer : 

T&‘j = A(,, exp (-t/27”“) 

x exp [z&,,(x, sin Bu’, +x2 cos 8(,, -c$jt)] 

for the incident wave 

T{“‘j = A, ,’ exp (- Z/~T(“‘) 

xexp[ik’,,(x, sin8~,,-x,cos0~,,-c~“‘,‘t)] 

for the reflected wave 

Ti’& = Afz, exp ( - I/2?‘) 

x exp [i/c&x, sin &‘+x, cos ef2) -&)I 

for the refracted wave (25) 

where 

cyj = @)J( 1 - (Co’/2~P’k,~‘) ‘) for i = 0, 1,2 

and j = I, II. (26) 

The same constraint as equation (8) 

k (o, ,) > C(“‘/2a(“) and kc,, > C”‘/2a”’ (27) 

has also to be satisfied for under-damped waves to 
exist in each material layer. In terms of the incident, 
reflected, and refracted waves, the continuities of tem- 
perature and flux waves at the material interface of 
x2 = 0 gives 

4,) exp W(ojxl sin &,I ev [- (ik&‘d: 

+ i/&(“‘)r]+~~,, exp [ik(,,x, sin 0(,,] 

x exp [ - (ik, ,,c{“‘j + 1/27(“))t] = A(*) exp (-t/27(“) 

x exp [ik(,,x, sin tIc2’] exp [- (ik(,,c{!& + 1/2r”‘)r]. 

(28) 

For any values of xl and I, equation (28) is satisfied 
if 

kc,,, sin 0,,, = kc,, sin .9(,, = kc,, sin ec2,, 
k c(I’) - k ,]‘I, - k c(‘) 

(0) (0) - (I) I) - (2) (2)r 

7w = 7uI) 
(29) 

With the assistance of equation (26), as shown pre- 
viously, equation (29) is equivalent to 

k,,, = kc,,, f?,,, = O(o, for reflection waves 

kc2) = [C(“)/C(‘)]k~,,, 

sin ec2) = [C?“/P] sin eco, for refraction waves. 

(30) 

Note that the condition of 7(') = 7("), i.e. C(“/C”” = 
J(a(‘)/a(*‘)), in equation (29) seems very restrictive for 
harmonic waves with damping to exist in both sides 
of the material interface. The functional approach 
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employing the finite Fourier transform [9] or Green’s 
function [27] allows more general forms of waves 
which do not require such a strong condition. It has 
been observed, however, that discontinuity of relax- 
ation time from one material layer to another only 
affects the refracted wave forms while the interfacial 
behavior of thermal waves remains the same. This is 
especially true for 7(I) < 7”‘) according to the work of 
Frankel et al. [9]. With regard to the behavior of 
the refracted wave relative to the incident wave in the 
neighborhood of the material interface, therefore, the 
harmonic analysis employed in this work is sufficient 
although a strong constraint is imposed through the 
continuity of relaxation times. 

By equation (30), the continuities of temperature 
and heat flux waves across the material interface 
renders 

(31) 

The relative strength of the reflected and the refracted 
wave to the incident wave can thus be obtained : 

A (I) Rc ~0s ‘40, - RK,/( 1 - Ri sin2 Bco,) 
-= 
A (01 R, cos eCo, + R,,/(l - Ri sin2 Bco,) 

A (2) 2R, cos eCo, 
-= 
A(,, R,cose~o,+R,,/(1-R~sin2e~0~) 

(32) 

where R, = X”‘/X”‘i with X s K, C and the relations 
in equation (30) have been used. In the presence of a 
material interface, the reflected angle of the thermal 
wave is still the same as the incident angle, i.e. 
4 ,) = 4,). While the refracted angle (ec2J depends 
only on the ratio of the thermal wave speed (R,), 
as shown by the relation of sin e(2) = Rc sin Bto, in 
equation (30), the relative strengths of reflected 
(A, ,,/A,,,) and refracted (A,,,/ACo,) waves also depend 
on the ratio of thermal conductivities (R,). The fol- 
lowing cases are important for the reflection and 
refraction of thermal waves : 

(a) Complete rejection. Note that equation (32) 
makes physical sense only if sin B,?, = R, sin 6,0, < 1. 
In the case that R,sin Oco, > I, cost&) = i[(RC 
x sin e,“,y- 1]“2 which is purely inqqinary. The 
refracted wave in this case, refer to equation (25), 
becomes 

Tj’j) = A,,, exp { -kC2,[(R, sin B(o,)2 - l] ‘j2x2} 

x exp (-t/27”‘) exp [ik,,,(x, sin ec2, -&)]. (33) 

While an oscillatory wave behavior is still present in the 
x,-direction, the refracted wave decays exponentially 
in the direction of x2. With regard to the relative 
strength of the reflected wave A,,,/A,,, in equation 
(32), most importantly, the numerator and denomi- 
nator appear as complex conjugate in this case. It 
reveals that no refraction would occur because the 

FIG. 5. The envelope for the complete transmission of 
temperature waves, equation (33). 

amplitude, and hence the wave energy proportional 
to the square of the amplitude, of the incident and the 
reflected waves are equal. A phase shift, however, 
results between the incident and the reflected waves. 
It is only in the limiting case that R, sin Bco, = 1, 
A,,, = Ao, and the incident and the reflected waves 
become in phase. In equation (33), due to the absence 
of a wave behavior in the x,-direction, ‘refraction’ 
angle 0(Z) does not possess a physical meaning. This 
phenomenon has also been observed for displacement 
and stress waves penetrating through an interface 
between elastic media [25]. 

(b) Complete transmission. Another important 
situation is the complete transmission of the tem- 
perature wave into the material layer (I). For an inci- 
dent wave with a finite amplitude A(,,, this situation 
is described by a zero-strength of the rejected wave, 
i.e. AC,,/ACo,. It results 

cos2 efo,+(R, sin eco,)2 = (R,.R,)2. (34) 

Figure 5 shows the envelope of complete transmission 
in terms of the ratios of R,, R,, and the incident angle 
O(,,. When Bco, = n/2, the case of a normal incident 
wave, complete transmission may occur only if Rc = 1 
as depicted by equation (34). For smaller values of R,, 
refer to the planes with R, being constant, the value of 
R, decreases with the incident angle 0,,, for complete 
transmission. For larger values of R,, instead, the 
value of R, increases when the value of B(,, decreases. 
For R, = 0.5, as an example, Figs. 6 and 7 display the 
relative amplitudes of reflected (AC,,/ACo,) and refrac- 
ted (Ac2,/A,,,) waves represented by equation (32). 
The flat surface in Fig. 6 represents the situations for 

FIG. 6. The relative strength of reflection wave, A(,,/&, in 
equation (31) with R, = 0.5. 
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FIG. 7. The relative strength of refraction wave, A,JA,,, in 
equation (31) with R, = 0.5. 

complete transmission and no reflection wave exists. 
Note also that limiting values of A, ,,/A,,, and At2,/A,,,, 
being 1 and 2, respectively, exist at O(,), = 0” when R, 
approaches zero. 

REFLECTION AND REFRACTION OF 
THERMAL SHOCK WAVES 

For a heat source [4, 51 or a crack tip [6, 71 pro- 
pagating at a speed faster than that of the heat propa- 
gation in a solid, shock waves will be formed around 
the moving origin. The thermal shock wave thus 
formed reflects the insufficient time for dissipating 
heat into the surrounding media and’ the thermal 
energy thus cumulates at the shock surface. For a heat 
source moving in the material layer (II) with a velocity 
u, as illustrated in Fig. 8, the shock wave is oriented 
in a direction of sin- ’ (l/M”‘)) measured from the 
trailing edge of the heat source. The thermal Mach 
number M,“’ is defined as u/C,“‘. For the thermal 
shock formation, the speed of the moving source o 
must be greater than or equal to the thermal wave 
speed C”” and consequently M”” > 1. 

Reflection and refraction of thermal shock waves 
are important because they may result in delamination 
or interfacial cracking under extreme conditions [I, 
161. For the thermal shock coming from the material 
layer (II) with an incident angle O,,, = n/2 
-sin- ’ (I/M”“), refer to equation (30), it yields 

refracted 
thermal shock 
wave (1) 

incident 
thermal shock 
wave 

material 
interface 

(11) 

reflected 
thermal shock 

M”‘) > 1 
wave 

FIG. 8. Reflection and refraction of thermal shock waves 
induced by a fast-moving source in the material layer (II), 

M”” > 1. 

O,,, =7r/2-sin~‘(l/M”“) 

for the reflection wave, and 

sin O,?, = (Ml”l/M”l) sin o,,, = [&j(“J’- 11 ‘,2/Ml” 

for the reflection wave (35) 

where M”’ = v/C”’ is the thermal Mach number rela- 
tive to the thermal wave speed C,” in the material 
layer (I). In equation (35), the result of sin O,,, = 
[~“I’?- 111/2/M ,I” has been used. For refraction 
waves to exist physically, the condition of sin 0,2, 
< 1 must be satisfied which requires 

~"I'?-~"'? < 1, 
(36) 

The physical significance of equation (36) will be dis- 
cussed later. For the thermal Mach numbers M”’ and 
M”” in this range, equation (35) depicts that 

sin O,,,/sin O,,,, = ~""/~'I' = c'l'/c'll', (37) 

Because the sine function is monotonically increasing 
in the range from 0 to 7c/2, equation (37) implies 

&2’ ’ 4”’ if C”’ > C”“, O,?) < O,,, if C”’ < C,“‘. 

(38) 

This situation is further illustrated in Fig. 9. The 
refracted shock wave sweeps toward the material 
interface if the thermal wave speed C”) is larger than 
C”“. It departs from the material interface, on the 
other hand, if the thermal wave speed C”’ is smaller 
than C,“‘. With these special values of B,,,, and 0,?,, the 
relative amplitudes of reflected and refracted waves 
shown by equation (32) become 

A ( ,, R&f”‘- QM”” J(M”‘2 _ ,$f”‘” + 1) 
-= 
A ,o, R,M” + R,M”” ,/(M’“’ -M”“’ + 1) 

A ‘2’ 2R,M”’ 
-= 
A (,,, R&f”’ + R,M”“,/(M”” - M”“’ + 1) ’ 

(39) 

The condition for complete transmission, equation 
(34), reduces to 

MU’ 
M’“‘= ( > 2 J( MC"' -Ml"'2 + 1) (40) 

C”,>CW’ 

\ XI 
I \ 

%a’ I 
\ 

I %I’ ‘\ 

incident I reflected 
thermal shock wave thermal shock wave 

FIG. 9. Two possible paths of wave refraction for C”’ > C”” 
and C(” < C”“. The path for C(” = C”” is in line with the 

incident wave. 
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in terms of the thermal Mach numbers and the ratio 
of RJR,. 

The physical meaning of the constraint shown by 
equation (36) is now clear. For M(“)* -MC’)* > 1, the 
quantity M(l)* - M(“” + 1 inside the square roots in 
equations (39) and (40) is negative. The numerator 
and denominator of A,,,/&, in equation (39) thus 
become complex conjugate. In this case, as discussed 
in section (a) in the previous section, the incident and 
reflected waves have the same amplitude and wave 
energy, i.e. IA,,,1 = &,I, and no refraction wave 
could exist. Similar to equation (33), the transmitted 
wave into the material layer (I) has the form of 

T{\\ = id,*) exp [-/c~,,x~(M”“~ 

-IV(‘)* - 1) ‘/2/M(‘1] exp (- t/2+‘)) 

- exp [ik(,,x, (M”“‘- 1) ‘/*/M(‘) -~$~t] (41) 

which decays in the x,-direction. Equation (36), there- 
fore, provides the physical condition for the presence 
of a complete wave behavior on both sides of the 
material interface. Should the conditions of 
Rc sin &, > 1 (refer to equation (33)) or equation 
(41) be violated, the transmitted wave into the 
material layer (I) decays in the x,-direction. Conse- 
quently, refraction of temperature waue.s makes no 
physical sense. 

Under the constraint of equation (36), the refracted 
path of the shock wave shown in Fig. 9 needs to be 
re-examined. Retrieving M(” = v/C(‘) and MC”) = 
U/C”“, equation (36) becomes 

(42) 

Since the velocity of the moving source must be real, 
first of all, the wave speed C’(I) must be greater than 
C(“). The path departing from the material interface 
for C(‘) < C”“’ in Fig. 9, therefore, is not acceptable for 
a wave behavior in refraction. For C”) > C”“, the 
thermal energy is carried away from the interface 
faster than that incident upon it. No thermal energy 
will cumulate at the interface and the refracted wave 
inclined toward the material interface. Secondly, an 
upper bound being C(‘)C(“)/[C(‘)* - C(“)*] ‘/* exists for 
the speed of the moving source. Should the speed u 
exceed this bound value, a decayed behavior in the x2- 
direction is present and the wave nature in refraction 
disappears. 

Graphically, the constraint shown by equation (36) 
is displayed in Fig. 10. Since MC”) must be greater 
than one for the thermal shock formation, refraction 
waves can only exist in the dotted area between the 
hyperbola (M(“)* -M(‘)’ = 1) and its asymptote 
(MC”) = M(l)). Within the same domain of M(‘) and 
M”” Fig. 11 shows the surface represented by equa- 
tion ‘(40) for the complete transmission of shock 
waves. The value of R,/R,, as a typical example, is 
taken to be 2.0. The flat surface in the figure represents 
the state space in which M(l)*-M(“)*+ 1 < 0. The 

-0 1 2 3 4 5 
MUI 

FIG. 10. The physical domain of M”‘)‘-M”” < I for the 
existence of refraction wave in the principal direction (x2) of 

wave propagation. 

MC”,2 _ MC02 > 1. 

no refraction 

FIG. 11. The envelope for the complete transmission of shock 
waves. Equation (39) with RJR, = 2.0. 

transmitted wave in this region has a form of equation 
(41) and no wave refraction occurs. At the same value 
of RJR,, the relative amplitudes of reflected and 
refracted waves shown by equation (39) are displayed 
in Figs. 12 and 13. On the planes with M”‘) being 
constant, both amplitudes decrease when the value of 
M(‘) (C(“)) increases (decreases). On the planes with 

no refraction A ). 

FIG. 12. The relative strength of the reflected shock wave, 
A,,,/&, in equation (38) with RJR, = 2.0. 

’ no refraction 

FIG. 13. The relative strength of the refracted shock wave, 
&,/A(,, in equation (38) with RJR, = 2.0. 
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M”’ being constant, on the other hand, relative 
minima exist at certain values of Mu”. By setting the 
derivatives of A,,,/A,,, and A&A’,, in equation (39) 
with respect to M “” be zero, it can be shown that the 
relative minima of reflected and refracted amplitudes 
occur at the same value of A@“’ = [(M”‘*+ 1)/2] ‘j2. 

CONCLUSION 

Reflection and refraction of thermal waves from a 
surface or an interface between dissimilar materials 
have been studied by the harmonic analysis. In 
addition to the harmonic component varying with 
time sinusoidally, the thermal wave possess a damping 
with a rate of l/27, with 7 being the relaxation time of 
the solid medium. For an under-damped wave 
behavior to exist, the wave number k must be greater 
than the ratio of C/2u. In terms of the relaxation 
time T, this ratio can also be expressed as 1/2C~. The 
quantity CT is an intrinsic thermal property which, as 
an extension of the definition for r, can be defined 
as the relaxation distance in a solid medium. The 
relaxation distance dominates the transition of ther- 
mal waves from an over-damped to an under-damped 
behavior when subjected to an external frequency 
excitation [14, 151. In this work, it is further related 
to the wave number for an under-damped behavior 
to exist in the thermal wave propagation. The relaxa- 
tion distance seems to be an essential quantity in 
promoting the thermal wave theory to practical 
applications. 

The reflection and refraction patterns of thermal 
waves from a material interface can be studied, at least 
in principle, by solving the energy equations in each 
material layer coupled through the boundary con- 
ditions. For the one-dimensional problem, this has 
been demonstrated by Frankel et al. [9]. The con- 
vergence of the numerical algorithms for the analytical 
solutions, however, is very slow in comparison with 
the parabolic type of equation. From an analytical 
point of view, this behavior is expected because the 
energy equation, either T- or q-representation in equa- 
tion (2), is non-self adjoint in nature [24,27]. It results 
in a damping factor of exp (-t/27) which is mainly 
responsible for the slow convergence. In a recent study 
by Tzou and Frew [27], for example, reflection of 
temperature waves from a surface subjected to both 
temperature- and flux-specified boundary conditions 
was attempted. The method of Fourier transferm ren- 
ders an improper integral which has to be computed 
numerically. Even in determining the reflection angle 
which appears to be the simplest case in the present 
approach, the upper bound being infinity has to be 
increased to the order of 106-10’ for satisfactory con- 
vergence. While such a functional approach is capable 
of determining the amplitude A’,, of the incident wave, 
combination with the harmonic analysis being pro- 
posed in this work facilitates the characterization for 
reflected and refracted waves. The useful informa- 
tion includes the reflected and refracted angles, the 

strengths of reflected and refracted waves, and the 
physical conditions for complete transmission and 
reflection. Due to slow convergence, these character- 
istics can hardly be determined by the functional 
approach alone and the simple relations resulting 
from the harmonic analysis is illuminating in this 
sense. 
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